Methods of measuring protein disulfide isomerase activity: a critical overview
نویسندگان
چکیده
Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.
منابع مشابه
Protein disulfide isomerase a multifunctional protein with multiple physiological roles
Protein disulfide isomerase (PDI), is a member of the thioredoxin superfamily of redox proteins. PDI has three catalytic activities including, thiol-disulfide oxireductase, disulfide isomerase and redox-dependent chaperone. Originally, PDI was identified in the lumen of the endoplasmic reticulum and subsequently detected at additional locations, such as cell surfaces and the cytosol. This revie...
متن کاملTherapeutic implications of protein disulfide isomerase inhibition in thrombotic disease.
The study of thrombus formation has increasingly applied in vivo tools such as genetically modified mice and intravital microscopy to the evaluation of molecular and cellular mechanisms of thrombosis. Among several unexpected findings of this approach was the discovery that protein disulfide isomerase serves an essential role in thrombus formation at sites of vascular injury. The observation th...
متن کاملProtein disulfide isomerase activity is released by activated platelets.
The release of protein disulfide isomerase by activated platelets was hypothesized on the basis of reported intermolecular and intramolecular thiol-disulfide exchange and disulfide reduction involving released thrombospondin in the supernatant solution of activated platelets (Danishefsky, Alexander, Detwiler: Biochemistry, 23:4984, 1984; Speziale, Detwiler: J Biol Chem, 265:17859, 1990; Spezial...
متن کاملProtein disulfide isomerase mutant lacking its isomerase activity accelerates protein folding in the cell.
We investigated the effect of protein disulfide isomerase (PDI) on in vivo protein folding of human lysozyme (h-LZM) in a specially constructed yeast coexpression system. Coexpression with PDI increased the amounts of intracellular h-LZM with the native conformation, leading to an increase in h-LZM secretion. The results indicated that PDI is a real catalyst of protein folding in the cell. The ...
متن کاملProtein Disulfide Isomerase: Function and Mechanism in Oxidative Protein Folding by
The formation of native intramolecular disulfide bonds is critical for the folding and stability of many secreted proteins. This process involves oxidation of protein thiols to form disulfide bonds as well as rearrangement of any non-native disulfide bonds that might form. Protein disulfide isomerase (PDI) is an abundant catalyst for native disulfide bond formation in the lumen of endoplasmic r...
متن کامل